An Introduction to Site Investigations for Foundation Design in Cold Regions
Optimization of Design for Better Structural Capacity Innovations and Applications in Geotechnical Site Characterization
An Introduction to Field and Laboratory Investigations for Foundations in Expansive Soils Basics of Foundation Design
Proceedings of the International Workshop on Limit State Design in Geotechnical Engineering Practice
Advances in Deep Foundations Geotechnical and Foundation Engineering
Analysis and Design of Shallow and Deep Foundations
Architectural Graphic Standards Technology and Practice in Geotechnical Engineering
Geotechnical Engineering Design
Geotechnical Investigations Foundation Design
Engineering for Expansive Soils
Deep Foundations and Geotechnical in Situ Testing
Parliamentary Services Building Tall Building Foundation Design
Evaluation of Soil and Rock Properties
Foundation Engineering Principles of Foundation Engineering
Piezocone and Cone Penetration Test (CPTu and CPT) Applications in Foundation Engineering
Forensic Geotechnical and Foundation Engineering
Geotechnical Engineering Calculations and Rules of Thumb
Handbook of Geotechnical Investigation and Design Tables
Analysis of Spatial Variability in Geotechnical Data for Offshore Foundations
An Introduction to Foundations of Structures
International Building Code 2018
Geotechnical Investigations and Improvement of Ground Conditions
Geotechnical Engineering Circular No. 6
Geotechnical and Foundation Engineering Foundation Design Codes and Soil Investigation in View of International Harmonization and Performance Based Design
Forensic Geotechnical and Foundation Engineering, Second Edition
Geotechnical Engineering Investigation Handbook, Second Edition
Soil Mechanics
This publication contains the abstracts of 20 papers, the majority of which were presented at the International Workshop on Limit State Design in Geotechnical Engineering Practice (LSD2003). The complete contributions are available in the accompanying CD-ROM (special lecture not included). The topics covered include: performance-based and limit state design philosophies; issues arising from the implementation of limit state design codes; elaborations of OC measured valuesOCO, OC derived valuesOCO and OC characteristic valuesOCO; reliability-based methodologies for analytical calibration of partial factors; and application of partial factors in FEM where highly nonlinear force-deformation behaviors may govern.

"Piezocone and cone penetration tests (CPTu and CPT) applications in foundation engineering includes different approaches for determining the bearing capacity of shallow foundations, along with methods for determining pile bearing capacity and settlement concepts. The use of soft computing (GMDH) neural networks related to CPT records and Geotechnical parameters are also discussed. In addition, different cases regarding the behavior of foundation performance using case records, such as shallow foundation, deep soil improvement, soil behavior classification (SBC), and bearing capacity are also included. Provides the latest on CPT and CPTu performance in geotechnical engineering, i.e., bearing capacity, settlement, liquefaction, soil classification and shear strength prediction Introduces soft computing methods for processing soil properties and pile bearing capacity via CPT and CPTu Explains CPT and CPTu testing methods which allows for the continuous, or virtually continuous, record of ground conditionsOffers the latest regulations on designing and installing commercial and residential buildings. This publication
provides introductory technical guidance for civil engineers, geotechnical engineers and other professional engineers and construction managers interested in site investigations for design and construction of foundations of buildings and structures in arctic and subarctic regions. Here is what is discussed: 1. GENERAL, 2. REMOTE SENSING AND GEOPHYSICAL INVESTIGATION, 3. DETAILED DIRECT INVESTIGATIONS, 4. SITE TECHNICAL DATA.

Your guide to the design and construction of foundations on expansive soils Foundation Engineering for Expansive Soils fills a significant gap in the current literature by presenting coverage of the design and construction of foundations for expansive soils. Written by an expert author team with nearly 70 years of combined industry experience, this important new work is the only modern guide to the subject, describing proven methods for identifying and analyzing expansive soils and developing foundation designs appropriate for specific locations. Expansive soils are found worldwide and are the leading cause of damage to structural roads. The primary problem that arises with regard to expansive soils is that deformations are significantly greater than in non-expansive soils and the size and direction of the deformations are difficult to predict. Now, Foundation Engineering for Expansive Soils gives engineers and contractors coverage of this subject from a design perspective, rather than a theoretical one. Plus, they'll have access to case studies covering the design and construction of foundations on expansive salts from both commercial and residential projects. Provides a succinct introduction to the basics of expansive soils and their threats Includes information on both shallow and deep foundation design Profiles soil remediation techniques, backed-up with numerous case studies Covers the most commonly used laboratory tests and site investigation techniques used for establishing the physical properties of expansive soils If you're a practicing civil engineer, geotechnical engineer or contractor, geologist, structural engineer, or an upper-level undergraduate or
graduate student of one of these disciplines, Foundation Engineering for Expansive Soils is a must-have addition to your library of resources. For graduate and undergraduate courses in Foundation Engineering Understanding and Practicing Foundation Design Principles Foundation Design: Principles and Practices includes the most noteworthy research and advancements in Foundation Engineering. Following a systematic approach of identifying major concepts followed by strategic analysis and design, the Third Edition teaches readers not only how to understand foundation engineering, but to apply it to real problems. The highly up-to-date material places great emphasis on limit state design and includes a new focus on load and resistance factor design in both the structural and geotechnical aspects of the process. The ground is one of the most highly variable of engineering materials. It is therefore not surprising that geotechnical designs depend on local site conditions and local engineering experience. Engineering practices, relating to investigation and design methods site understanding and to safety levels acceptable to society, will therefore vary between different regions. The challenge in geotechnical engineering is to make use of worldwide geotechnical experience, established over many years, to aid in the development and harmonization of geotechnical design codes. Given the significant uncertainties involved, empiricism and engineering presents guidance and information for the geotechnical investigation necessary for the selection and design of foundations for heavy and light buildings constructed in expansive clay soil areas. The information in this publication is generally applicable to many types of structures such as residences, warehouses, and multistory buildings. Emphasis is given to the maintenance of an environment that encourages constant moisture conditions in the foundation soils during and following construction. Special attention must always be given to specific requirements of the structure such as limitations on allowable differential movement. The guidance and
information provided in this publication can significantly reduce the risk of undesirable and severe damages to many structures for numerous expansive soil conditions. However, complete solutions for some expansive soil problems are not yet available; e.g., the depth and amount of future soil moisture changes may be difficult to predict. Civil Engineering has recently seen enormous progress in the core field of the construction of deep foundations. This book is the result of the International Workshop on Recent Advances in Deep Foundations (IWDPF07), which was held in Yokosuka, Japan from the 1st to the 2nd of February, 2007. Topics under discussion in this book include recent reseThis document presents state-of-the-practice information on the evaluation of soil and rock properties for geotechnical design applications. This document addresses the entire range of materials potentially encountered in highway engineering practice, from soft clay to intact rock and variations of materials that fall between these two extremes. Information is presented on parameters measured, evaluation of data quality, and interpretation of properties for conventional soil and rock laboratory testing, as well as in situ devices such as field vane testing, cone penetration testing, dilatometer, pressuremeter, and borehole jack. This document provides the design engineer with information that can be used to develop a rationale for accepting or rejecting data and for resolving inconsistencies between data provided by different laboratories and field tests. This document also includes information on: (1) the use of Geographical Information Systems (GIS) and Personal Data Assistance devices for the collection and interpretation of subsurface information; (2) quantitative measures for evaluating disturbance of laboratory soil samples; and (3) the use of measurements from geophysical testing techniques to obtain information on the modulus of soil. Also included are chapters on evaluating properties of special soil materials (e.g., loess, cemented sands, peats and organic soils, etc.) and the use
of statistical information in evaluating anomalous data and obtaining design values for soil and rock properties. An appendix of three detailed soil and rock property selection examples is provided which illustrate the application of the methods described in the document.

Master the core concepts and applications of foundation analysis and design with Das/Sivakugan’s best-selling PRINCIPLES OF FOUNDATION ENGINEERING, 9th Edition. Written specifically for those studying undergraduate civil engineering, this invaluable resource by renowned authors in the field of geotechnical engineering provides an ideal balance of today's most current research and practical field applications. A wealth of worked-out examples and figures clearly illustrate the work of today's civil engineer, while timely information and insights help readers develop the critical skills needed to properly apply theories and analysis while evaluating soils and foundation design.

Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Geotechnical Investigation and Improvement of Ground Conditions covers practical information on ground improvement and site investigation, considering rock properties and engineering geology and its relation to construction. The book covers geotechnical investigation for construction projects, including classic case studies with geotechnical significance. Additional sections cover soil compaction, soil stabilization, drainage and dewatering, grouting methods, the stone column method, geotextiles, fabrics and earth reinforcement, miscellaneous methods and tools for ground improvement, geotechnical investigation for construction projects, and forensic geotechnical engineering. Final sections present a series of site-specific case studies. Dedicated to ground improvement techniques and geotechnical site investigation Provides practical guidance on site-specific geotechnical investigation and the subsequent interpretation of data Presents site-specific case studies with geotechnical
significance. Includes site investigation of soils and rocks. Gives field-oriented information and guidance. This practical handbook of properties for soils and rock contains, in a concise tabular format, the key issues relevant to geotechnical investigations, assessments and designs in common practice. In addition, there are brief notes on the application of the tables. These data tables are compiled for experienced geotechnical professionals who require a reference document to access key information. There is an extensive database of correlations for different applications. The book should provide a useful bridge between soil and rock mechanics theory and its application to practical engineering solutions. The initial chapters deal with the planning of the geotechnical investigation, the classification of the soil and rock properties and some of the more used testing is then covered. Later chapters show the reliability and correlations that are used to convert that data in the interpretative and assessment phase of the project. The final chapters apply some of these concepts to geotechnical design. This book is intended primarily for practicing geotechnical engineers working in investigation, assessment and design, but should provide a useful supplement for postgraduate courses.

Geoenvironmental Engineering and Geotechnics: Progress in Modeling and Applications (GSP 204), presents 39 papers that represent the latest developments in the application of soil, rock, and groundwater mechanics in geotechnical engineering modeling and practice including: the relationship between geotechnical engineering and sustainability; new evidence and research into the strength and deformational behavior of soil; and recent advances in characterization and modeling of groundwater flow in geological formations of diverse geotechnical properties. This Geotechnical Special Publication examines these and other important areas of geotechnical engineering using three main categories: Geoenvironmental Engineering, Geotechnics and Seepage and Porous Mechanics. These papers were presented at the
GeoShanghai 2010 Conference, sponsored by the Geo-Institute of the American Society of Civil Engineers, held in Shanghai, China, June 3–5, 2010. One-of-a-kind coverage on the fundamentals of foundation analysis and design. Analysis and Design of Shallow and Deep Foundations is a significant new resource to the engineering principles used in the analysis and design of both shallow and deep, load-bearing foundations for a variety of building and structural types. Its unique presentation focuses on new developments in computer-aided analysis and soil-structure interaction, including foundations as deformable bodies. Written by the world's leading foundation engineers, Analysis and Design of Shallow and Deep Foundations covers everything from soil investigations and loading analysis to major types of foundations and construction methods. It also features: * Coverage on computer-assisted analytical methods, balanced with standard methods such as site visits and the role of engineering geology * Methods for computing the capacity and settlement of both shallow and deep foundations * Field-testing methods and sample case studies, including projects where foundations have failed, supported with analyses of the failure * CD-ROM containing demonstration versions of analytical geotechnical software from Ensoft, Inc. tailored for use by students in the classroom

In Situ Testing Methods in Geotechnical Engineering covers the field of applied geotechnical engineering related to the use of in situ testing of soils to determine soil properties and parameters for geotechnical design. It provides an overview of the practical aspects of the most routine and common test methods, as well as test methods that engineers may wish to include on specific projects. It is suited for a graduate-level course on field testing of soils and will also aid practicing engineers. Test procedures for determining in situ lateral stress, strength, and stiffness properties of soils are examined, as is the determination of stress history and rate of consolidation. Readers will be introduced to various approaches
to geotechnical design of shallow and deep foundations using in situ tests. Importantly, the text discusses the potential advantages and disadvantages of using in situ tests. Deep foundations, such as piles and suction caissons, are used throughout an offshore oil and gas production facility in deepwater. Ideally, the values of geotechnical properties for foundation design are determined by results from geotechnical investigation programs performed at the site of the foundation. However, the locations for facilities are not known exactly when soil borings are drilled and the footprint of a facility in deepwater can be very large with numerous foundation elements spread out over miles. Therefore, it is not generally feasible to perform a site-specific investigation for every foundation element. The objective of this research is to assess, analyze and model spatial variability in geotechnical properties for offshore foundations. A total of 97 geotechnical investigations from 14 offshore project sites covering the past twenty years of deepwater development in the Gulf of Mexico are compiled into a database. The geologic setting is primarily a normally to slightly overconsolidated marine clay, and the property of interest for the design of deep foundations is the undrained shear strength. The magnitude and characteristics of variability in design undrained shear strengths are analyzed quantitatively and graphically. Geostatistical models that describe spatial variability in the design shear strength properties to the distance away from the available information are developed and calibrated with available information from the database. Finally, a methodology is presented for incorporating the models into a reliability-based design framework to account for spatial variability in foundation capacity. Design examples are presented to demonstrate the use of the reliability methodology. Based on the design undrained shear strength profiles for the past 20 years in this Gulf of Mexico deepwater area, the design undrained shear strength varies spatially but does not depend on the time or method for site
investigations. There are nonlinear spatial relationships in the point shear strength laterally and vertically due to stratigraphy such that depth-averaged shear strengths are correlated over further distances than point shear strengths. The depositional forces are an important factor causing spatial variations in the undrained shear strength, with greater variation and less spatial correlation in the more recent hemipelagic deposits (about upper 60 feet) than the deeper turbidite deposits and along the shelf versus off the shelf. The increased conservatism required in deep foundation design due to spatial variability when site specific strength data are not available is generally small with less than a five percent increase required in design capacity in this geologic setting. Despite the development of advanced methods, models, and algorithms, optimization within structural engineering remains a primary method for overcoming potential structural failures. With the overarching goal to improve capacity, limit structural damage, and assess the structural dynamic response, further improvements to these methods must be entertained. Optimization of Design for Better Structural Capacity is an essential reference source that discusses the advancement and augmentation of optimization designs for better behavior of structure under different types of loads, as well as the use of these advanced designs in combination with other methods in civil engineering. Featuring research on topics such as industrial software, geotechnical engineering, and systems optimization, this book is ideally designed for architects, professionals, researchers, engineers, and academicians seeking coverage on advanced designs for use in civil engineering environments. GSP 97 contains 17 papers on in situ geotechnical testing presented at sessions of Geo-Denver 2000, held in Denver, Colorado, August 5-8, 2000. An accessible, clear, concise, and contemporary course in geotechnical engineering design. covers the major in geotechnical engineering packed with self-test problems and projects with an on-
line detailed solutions manual presents the state-of-the-art field practice covers both Eurocode 7 and ASTM standards (for the US). This book provides a comprehensive guide to the design of foundations for tall buildings. After a general review of the characteristics of tall buildings, various foundation options are discussed followed by the general principles of foundation design as applied to tall buildings. Considerable attention is paid to the methods of assessment of the geotechnical design parameters, as this is a critical component of the design process. A detailed treatment is then given to foundation design for various conditions, including ultimate stability, serviceability, ground movements, dynamic loadings and seismic loadings. Basement wall design is also addressed. The last part of the book deals with pile load testing and foundation performance measurement, and finally, the description of a number of case histories. A feature of the book is the emphasis it places on the various stages of foundation design: preliminary, detailed and final, and the presentation of a number of relevant methods of design associated with each stage. Since 1932, the ten editions of Architectural Graphic Standards have been referred to as the "architect's bible." From site excavation to structures to roofs, this book is the first place to look when an architect is confronted with a question about building design. With more than 8,000 architectural illustrations, including both reference drawings and constructible architectural details, this book provides an easily accessible graphic reference for highly visual professionals. To celebrate seventy-five years as the cornerstone of an industry, this commemorative Eleventh Edition is the most thorough and significant revision of Architectural Graphic Standards in a generation. Substantially revised to be even more relevant to today's design professionals, it features: An entirely new, innovative look and design created by Bruce Mau Design that includes a modern page layout, bold second color, and new typeface Better organized -- a completely new organization structure applies
the UniFormat(r) classification system which organizes content by function rather than product or material. Expanded and updated coverage of inclusive, universal, and accessible design strategies. Environmentally-sensitive and sustainable design is presented and woven throughout including green materials, LEEDS standards, and recyclability. A bold, contemporary new package— as impressive closed as it is open, the Eleventh Edition features a beveled metal plate set in a sleek, black cloth cover. Ribbon Markers included as a convenient and helpful way to mark favorite and well used spots in the book. All new material. Thoroughly reviewed and edited by hundreds of building science experts and experienced architects, all new details and content including: new structural technologies, building systems, and materials emphasis on sustainable construction, green materials, LEED standards, and recyclability. Expanded and updated coverage on inclusive, universal, and accessible design strategies. Computing technologies including Building Information Modeling (BIM) and CAD/CAM. New information on regional and international variations. Accessibility requirements keyed throughout the text. New standards for conducting, disseminating, and applying architectural research. New and improved details. With some 8,500 architectural illustrations, including both reference drawings and constructible architectural details, Architectural Graphic Standards continues to be the industry's leading, easily accessible graphic reference for highly visual professionals. Designed to give engineers a crash course in all aspects of modern geotechnical and foundation engineering. Takes readers step-by-step through the typical process of a design project--from proposal-writing to the final preparation of the "as built" report. Includes numerous visual aids: photographs, charts, tables, and more than 350 illustrations. Designed to give engineers a crash course in all aspects of modern geotechnical and foundation engineering. Takes readers step-by-step through the typical process of a design project--from proposal-writing to the final preparation of the "as built" report.
preparation of the "as built" report. Includes numerous visual aids: photographs, charts, tables, and more than 350 illustrations. Introductory technical guidance for civil, geotechnical, and structural engineers interested in design and construction of foundations for structures. Here is what is discussed:

1. BACKFILL FOR SUBSURFACE STRUCTURES
2. BEARING CAPACITY ANALYSIS
3. DEEP FOUNDATIONS
4. EARTHWORK FOR FOUNDATIONS
5. ENGINEERING PROPERTIES OF SOIL AND ROCK
6. EXCAVATION FOR STRUCTURES
7. FIELD AND LABORATORY INVESTIGATIONS FOR FOUNDATIONS IN EXPANSIVE SOILS
8. FOUNDATION DESIGN IN COLD REGIONS
9. FOUNDATIONS ON FILL AND BACKFILLING
10. FOUNDATIONS IN AREAS OF SIGNIFICANT FROST PENETRATION

Knowledge surrounding the behavior of earth materials is important to a number of industries, including the mining and construction industries. Further research into the field of geotechnical engineering can assist in providing the tools necessary to analyze the condition and properties of the earth. Technology and Practice in Geotechnical Engineering brings together theory and practical application, thus offering a unified and thorough understanding of soil mechanics. Highlighting illustrative examples, technological applications, and theoretical and foundational concepts, this book is a crucial reference source for students, practitioners, contractors, architects, and builders interested in the functions and mechanics of sedimentary materials.

Geotechnical Engineering Calculations Manual offers geotechnical, civil, and structural engineers a concise, easy-to-understand approach to the formulas and calculation methods used in soil and geotechnical engineering. A one-stop guide to the foundation design, pile foundation design, earth retaining structures, soil stabilization techniques, and computer software, this book places calculations for almost all aspects of geotechnical engineering at your finger tips. In this book, theories are explained in a nutshell and then the calculation is presented and solved in an illustrated, step-by-step fashion. All calculations are provided in both fps and SI units. The manual
includes topics such as shallow foundations, deep foundations, earth retaining structures, rock mechanics and tunnelling. In this book, the author's done all the heavy number-crunching for you, so you get instant, ready-to-apply data on activities such as: hard ground tunnelling, soft ground tunnelling, reinforced earth retaining walls, geotechnical aspects of wetland mitigation and geotechnical aspects of landfill design. • Easy-to-understand approach the formulas and calculations • Covers calculations for foundation, earthworks and/or pavement subgrades • Provides common codes for working with computer software • All calculations are provided in both US and SI units

The contributions contained in these proceedings are divided into three main sections: theme lectures presented during the pre-workshop lecture series; keynote lectures and other contributed papers; and a translation of the Japanese geotechnical design code.

This document is the sixth in a series of Geotechnical Engineering Circulars (GEC) developed by the Federal Highway Administration (FHWA). This Circular focuses on the design, procurement and construction of shallow foundations for highway structures. The intended users are practicing geotechnical, foundation and structural engineers involved with the design and construction of transportation facilities.

Learn how to conduct a professional forensic geotechnical and foundation investigation. Clearly written and easy to use, this authoritative book shows you step-by-step how to: INVESTIGATE damage, deterioration, or collapse in a structure EVALUATE problems caused by settlement, expansive soil, slope movement, moisture intrusion, and more INVESTIGATE damage from earthquakes and other natural causes DETERMINE what caused the damage DEVELOP repair recommendations PREPARE files and reports AVOID civil liability No matter what caused the structural damage, this book will help you pinpoint it and, if necessary, suggest a remedy. With advice on all aspects of the process, from accepting the assignment to testifying compellingly, this book is your all-in-one
guide to geotechnical and foundation investigations in forensic engineering. "Essentials of Soil Mechanics and Foundations: Basic Geotechnics, 7/e" provides a clear, detailed presentation of soil mechanics: the background and basics, the engineering properties and behavior of soil deposits, and the application of soil mechanics theories. This new edition features a separate chapter on earthquakes, a more logical organization, and new material relating to pile foundations design and construction and soil permeability. It's rich applications, well illustrated examples, end-of-chapter problems and detailed explanations make it an excellent reference for practicing engineers, architects, geologists, environmental specialists, and more! Covers new developments in geotechnical topics such as: Soil Properties and Analyses Pile Foundation Design and Testing Micropiles Soil Nail Walls Launched Soil Nails Soil Improvement Includes a more extensive scope of topics and clear, well developed presentations. Emphasizes how subject material can be used in the field. An excellent reference for practicing engineers, architects, geologists, environmental specialists and construction materials testing laboratories. The "Red Book" presents a background to conventional foundation analysis and design. The text is not intended to replace the much more comprehensive 'standard' textbooks, but rather to support and augment these in a few important areas, supplying methods applicable to practical cases handled daily by practising engineers and providing the basic soil mechanics background to those methods. It concentrates on the static design for stationary foundation conditions. Although the topic is far from exhaustively treated, it does intend to present most of the basic material needed for a practising engineer involved in routine geotechnical design, as well as provide the tools for an engineering student to approach and solve common geotechnical design problems. The Geotechnical Engineering Investigation Handbook provides the tools necessary for fusing geological characterization and
investigation with critical analysis for obtaining engineering design criteria. The second edition updates this pioneering reference for the 21st century, including developments that have occurred in the twenty years since the first edition was published, such as: • Remotely sensed satellite imagery • Global positioning systems (GPS) • Geophysical exploration • Cone penetrometer testing • Earthquake studies • Digitizing of data recording and retrieval • Field and laboratory testing and instrumentation • Use of the Internet for data retrieval The Geotechnical Engineering Investigation Handbook, Second Edition is a comprehensive guide to a complete investigation: study to predict geologic conditions; test-boring procedures; various geophysical methods and when each is appropriate; various methods to determine engineering properties of materials, both laboratory-based and in situ; and formulating design criteria based on the results of the analysis. The author relies on his 50+ years of professional experience, emphasizing identification and description of the elements of the geologic environment, the data required for analysis and design of the engineering works, and procuring the data. By using a practical approach to problem solving, this book helps engineers consider geological phenomena in terms of the degree of their hazard and the potential risk of their occurrence. A complete, up-to-date guide for forensic engineers Fully revised and packed with current case studies, Forensic Geotechnical and Foundation Engineering, Second Edition provides a step-by-step approach to conducting a professional forensic geotechnical and foundation investigation. This authoritative resource explains how to: Investigate damage, deterioration, and collapse in a structure Determine what caused the damage Develop repair recommendations Diagnose cracks Prepare files and reports Avoid civil liability Helpful charts and photographs aid in your understanding of the material covered. With expert advice on all aspects of the process--from accepting the assignment to delivering compelling
testimony--this is a practical, all-in-one guide to geotechnical and foundation investigations in forensic engineering. Explains how to investigate damage due to: Settlement of structures * Expansive soil * Lateral Movement * Earthquakes * Erosion * Deterioration * Bearing Capacity Failures * Shrinkage Cracking of Concrete Foundations * Timber Decay * Soluble Soil * Groundwater and Moisture Problems * And Other Causes

This practical handbook of properties for soils and rock contains in a concise tabular format the key issues relevant to geotechnical investigations, assessments and designs in common practice. There are brief notes on the application of the tables. These data tables are compiled for experienced geotechnical professionals who require a reference doThe object of this book is to shed light on the most important design aspects encountered in foundation engineering and to present basic design principles representative of the developed part of the world. Modern geotechnical investigation methods and their interpretation are exemplified. The philosophy of the new European code for geotechnical design is presented. The most important and practical aspects of ground modification techniques are included. This book can be used as a textbook for senior undergraduate and graduate students. It can also serve as a combined text- and handbook for professional engineers working in the field of geotechnical engineering. Line drawings and photographs accompany the text.

Copyright code: 8d09005ae86cf66d21ffbf79ca991792