Short Circuit Analysis Using Etap

A unique combination of theoretical knowledge and practical analysis experience. Derived from Yoshihide Hase's Handbook of Power Systems Engineering, 2nd Edition, this book provides readers with everything they need to know about power system dynamics. Presented in three parts, it covers power system theories, computation theories, and how prevailing engineering platforms can be utilized for various engineering works. It features many illustrations based on ETAP to help explain the knowledge within as much as possible. Recomputer all the chapters from the previous book, Power System Dynamics with Computer Based Modeling and Analysis offers nineteen new and improved content with updated information and all new topics, including two new chapters on circuit analysis which help engineers with non-electrical engineering backgrounds. Topics covered include: Essentials of Electromagnetism; Complex Number Notation (Symbolic Method) and Laplace-transform; Fault Analysis Based on Symmetrical Components; Synchronous Generators; Induction-motor; Transformer; Breaker; Arrester; Overhead-line; Power cable; Steady-State/Transient/Dynamic Stability; Control governor; AVR; Directional Distance Relay and R-X Diagram; Lightning and Switching Surge Phenomena; Insulation Coordination; Harmonics; Power Electronics Applications (Devices, PE-circuit and Control) and more. Combines computer modeling of power systems, including analysis techniques, from an engineering consultant's perspective. Uses practical analytical software to help teach how to obtain the relevant data, formulate what-if cases, and convert data analysis into meaningful information. Includes mathematical details of power system analysis and power system dynamics Power System Dynamics with Computer-Based Modeling and Analysis will appeal to all power system engineers as well as engineering and electrical engineering students.

Small-signal stability, control and dynamic performance of power systems

Python Based Power System Automation in PSS/E

Microgrid Protection and Control is the result of numerous research works and publications by R&D engineers and scientists of the Microgrid and Energy Internet Research Centre. Through the authors long-routed experience in the microgrid and energy internet industry, this book looks at the sophisticated protection and control issues connected to the special nature of microgrid. The book explains the different ways of classifying types of microgrids and common misconceptions, looking at industrial and research trends along with the different technical issues and challenges faced with deploying microgrid in various settings. Forecasting short-term demand and renewable generation for optimal operation is covered with techniques for accurate enhancement supported with practical application examples. With chapters on dynamic, transient and tertiary control and experimental and simulation tests this reference is useful for all those working in the research, engineering and application of microgrids and power distribution systems. Contains practical examples to support the research and experimental results on microgrid protection and control. Includes detailed theories and referential algorithms Provides innovative solutions to technical issues in protection and control of microgrids
Innovation in Power, Control, and Optimization: Emerging Energy Technologies

Generally there are two different methods in calculating short-circuit currents in power system networks in terms of considering arc resistance in calculations, the first method is based on considering the value of the arc resistance as a constant value (usually 0.5) or neglecting this value. By introducing some formulae for the arc resistance like the Warrington formula which is one of the most well-known formulae, second method could be applied. Second method is based on considering the value of the arc resistance in short-circuit calculation. To calculate the short-circuit current in power system networks our model should be accurate enough, to have an accurate model in these studies the value of the arc resistance should be considered. The problem here is the non-linear relationship between fault current and arc resistance. In this study by using ETAP software for fault analysis, Microsoft visual studio 2010 (C++) for the related iteration, short-circuit studies based on symmetrical components has been investigated on two different IEEE networks. Results show the efficiency of the arc resistance formula which has been used in this study in special range of fault currents.

Microgrid Protection and Control

As the demand for electrical power increases, power systems are being operated closer to their stability limits than ever before. This text focuses on explaining and analysing the dynamic performance of such systems which is important for both system operation and planning. Placing emphasis on understanding the underlying physical principles, the book opens with an exploration of basic concepts using simple mathematical models. Building on these firm foundations the authors proceed to more complex models and algorithms. Features include: * Progressive approach from simplicity to complexity. * Detailed description of slow and fast dynamics. * Examination of the influence of automatic control on power system dynamics. * Stability enhancement including the use of PSS and Facts. * Advanced models and algorithms for power system stability analysis. Senior undergraduate, postgraduate and research students studying power systems will appreciate the authors' accessible approach. Also for electric utility engineers, this valuable resource examines power system dynamics and stability from both a mathematical and engineering viewpoint.

Short Circuits in Power Systems

The 750kv substation is chosen for given a particular type of soil to design square ground grid mesh. By using the line to ground fault current generated on 750kv substation by ETAP short circuit analysis, ground grid parameters are determined using simple hand calculations and results are verified by modeling the same ground grid using ETAP ground grid system. After getting a general idea about the effect on system generated fault on GGS, System data including fault current from existing 50kv Rawat substation is gathered to verify all the crucial parameters are within the defined limit or not. To evaluate important GGS parameters using ETAP-12 GGS Module, mesh analysis is undertaken by both the methods which are IEEE 80-2000 and FEM. The shortcoming in the already existing mesh are showed by ETAP warning followed by an alert dialog box and remedial actions are suggested to solve these problems. The increase in fault current by the xi expansion of substation is considered with possible solution and calibration of ground grid mesh is presented based on modern technology. Finally, the comparison between IEEE 80-2000 and FEM is done in order to design GGS and effect of ground grid area, a number of conductors/rods and spacing between conductors are explained by help of several case study results.

Enhancement of a Fault Analysis Method Using Arc Resistance Formula

A thorough analysis of basic electrical-systems considerations is presented. Guidance is provided in design, construction, and continuity of an overall system to achieve safety of life and preservation of property; reliability; simplicity of operation; voltage regulation in the utilization of equipment within the tolerance limits under all load conditions; care and maintenance; and flexibility to permit development and expansion. Recommendations are made regarding system planning; voltage considerations; surge voltage protection; system protective devices; fault calculations; grounding; power switching, transformation, and motor-control apparatus; instruments and meters; cable systems; busways; electrical energy conservation; and cost estimation.

SKM, ETAP, and EDSA Power System Analysis Tutorials

2019 IEEE International Conference on Innovative Research and Development (ICIRD)

Designed to increase understanding on a practical and theoretical basis, this invaluable resource provides engineers, plant operators, electricians and technicians with a thorough grounding in the principles and practicabilities behind power system protection. Coverage of the fundamental knowledge needed to specify, use and maintain power protection systems is included, helping readers to increase plant efficiency, performance and safety. Consideration is also given to the practical techniques and engineering challenges encountered on a day-to-day basis, making this an essential resource for all.

Offshore Electrical Engineering Manual
GUCON 2019 is a non profit conference and it will provide an opportunity to the practicing engineers, academicians and researchers to meet in a forum to discuss various issues and its future direction in the field of Electrical, Computer & Electronics Engineering and Technologies The conference aims to put together the experts from the relevant areas to disseminate their knowledge and experience for the relevant future research scope. There are multiple tracks (12 tracks) in the conference covering almost all areas of Electronics, Computer & Electrical Engineering.

Power System Analysis (With Disk)

Over Current Relay Harmonic Performance

Power System Control and Stability

Current trends in innovative research for applications in the field of engineering, computing and technologies.

Sustainable Energy

The market liberalization is expected to affect drastically the operation of power systems, which under economical pressure and increasing amount of transactions are being operated much closer to their limits than previously. These changes put the system operators faced with rather different and much more problematic scenarios than in the past. They have now to calculate available transfer capabilities and manage congestion problems in a near on line environment, while operating the transmission system under extremely stressed conditions. This requires highly reliable and efficient software aids, which today are non-existent, or not yet in use. One of the most problematic issues, very much needed but not yet encountered today, is on-line dynamic security assessment and control, enabling the power system to withstand unexpected contingencies without experiencing voltage or transient instabilities. This monograph is devoted to a unified approach to transient stability assessment and control, called Single Machine Equivalent (SIME).

Electrical Equipment

Modern Power System Analysis

International Conference on Energy and Power Engineering (EPE 2014)

Comprehensive Energy Systems provides a unified source of information covering the entire spectrum of energy, one of the most significant issues humanity has to face. This comprehensive book describes traditional and novel energy systems, from single generation to multi-generation, also covering theory and applications. In addition, it also presents high-level coverage on energy policies, strategies, environmental impacts and sustainable development. No other published work covers such breadth of topics in similar depth. High-level sections include Energy Fundamentals, Energy Materials, Energy Production, Energy Conversion, and Energy Management. Offers the most comprehensive resource available on the topic of energy systems. Presents an authoritative resource authored and edited by leading experts in the field. Consolidates information currently scattered in publications from different research fields (engineering as well as physics, chemistry, environmental sciences and economics), thus ensuring a common standard and language.

Matlab

Developing a system that can cope with variations of system or control parameters, measurement uncertainty, and complex, multi-objective optimization criteria is a frequent problem in engineering systems design. The need for a priori knowledge and the inability to learn from past experience make the design of robust, adaptive, and stable systems a difficult task. Innovation in Power, Control, and Optimization: Emerging Energy Technologies unites research on the development of techniques and methodologies to improve the performance of power systems, energy planning and environments, controllers and robotics, operation research, and modern artificial computational intelligent techniques. Containing research on power engineering, control systems, and methods of optimization, this book is written for professionals who want to improve their understanding of strategic developments in the area of power, control, and optimization.

Arc Flash Analysis Study in Industry
Nowadays, hazard that associated with arc flash incident is increasing every year by year. The increasing of the incident has brought to our attention. This study proposed so that it can help the industries to eliminate or at least reduce those hazards. Through the analysis of this project, the limitation for the arc flash occurs will be proved through the stimulation of the short circuit calculation and the boundary calculation by using the ETAP software. There are few steps that will be included, which is data collection process, develop single line diagram, arcing short circuit calculations and also flash protection boundary calculations. The workers in industries should take the harm of arc flash as a serious matter and be aware of arc flash. The expected result from this project will be the limitation that will be gain in the end of this project. The limitations of the protective boundary to control the arc flash in industries. The limitations of the protective boundary from the result are also to control the usage of Personal Protective Equipment (PPE). For each distance form a system or work place there will be a certain suitable level of PPE. The result will help to reduce harm and accident that happens in industries. The analysis of this project basically will be based on industrial field, where the data that used to do the analysis will be involving the industry site.

Short-circuit Currents

Design Analysis and Optimization of Ground Grid Mesh of Extra High Voltage Substation

The sustainable energy sources are potentially employed to substitute petrol fuels in transport engines such as buses and small vehicles. Hydrogen-enriched compressed natural gas engines are forthcoming energy carriers for the internal combustion engine, with higher thermal efficiency and less pollutant emissions. The different availability of various countries has allowed various countries to adopt the most appropriate type of renewable energy technology according to their energy source adequacy/abundance. In Taiwan, ocean energy is considered as an abundant source of renewables due to its geographical location as an island. The Taiwanese government has approved the investment to construct an MW-scale demonstration electricity plant. In this book, the Taiwanese ocean energy experience is comprehensively presented. The technical and legal analyses of ocean energy implementation are provided. The challenges that they had to overcome to optimize the utilization of the most available ocean energy potential are discussed. The sustainable transition in South Africa would be a good example for implementing rooftop solar, especially in low-income communities. A part from the environmental benefits, sustainable energy technologies can boost the socioeconomic level of developing countries. Other advantages may be the continuous supply of energy and creation of new jobs opportunities. Moreover, sustainable renewable energy sources such as the wind could be employed for generating electricity to operate water purification systems in remote areas. This, in turn, would overcome the health problems associated with drinking water scarcity issues. This book is an attempt to cover the sustainable energy issues from a technical perspective. Furthermore, the sustainable energy applications and existing case studies are helpful illustrations for the broad understanding of the importance of sustainable energy.

Analysis of Faulted Power Systems

A unique combination of theoretical knowledge and practical analysis experience Derived from Yoshihide Hase's Handbook of Power Systems Engineering, 2nd Edition, this book provides readers with everything they need to know about power system dynamics. Presented in three parts, it covers power system theories, computation theories, and how prevalent engineering platforms can be utilized for various engineering works. It features many illustrations based on ETAP to help explain the knowledge within as much as possible. Recompiling all the chapters from the previous book, Power System Dynamics with Computer Based Modelling and Analysis offers nineteen new and improved content with updated information and all new topics, including two new chapters on circuit analysis which help engineers with non-electrical engineering backgrounds. Topics covered include: Essentials of Electromagnetism; Complex Number Notation (Symbolic Method) and Laplace-transform; Fault Analysis Based on Symmetrical Components; Synchronous Generators; Induction-motor; Transformer; Breaker; Arrester; Overhead-line; Power cable; Steady-State/Transient/Dynamic Stability; Control governor; AVR; Directional Distance Relay and R-X Diagram; Lightning and Switching Surge Phenomena; Insulation Coordination; Harmonics; Power Electronics Applications (Devices, PE-circuit and Control) and more. Combines computer modeling of power systems, including analysis techniques, from an engineering consultancy perspective. Uses practical analytical software to help teach how to obtain the relevant data, formulate what-if cases, and convert data analysis into meaningful information. Includes mathematical details of power system analysis and power system dynamics. Power System Dynamics with Computer-Based Modelling and Analysis will appeal to all power system engineers as well as engineering and electrical engineering students.

International Oilfield Surface Facilities

Electrical power is harnessed using several energy sources, including coal, hydel, nuclear, solar, and wind. Generated power is needed to be transferred over long distances to support load requirements of customers, viz., residential, industrial, and commercial. This necessitates proper design and analysis of power systems to efficiently control the power flow from one point to the other without delay, disturbance, or interference. Ideal for utility and power system design professionals and students, this book is richly illustrated with MATLAB® and Electrical Transient Analysis Software (ETAP®) to succinctly illustrate concepts throughout, and includes examples, case studies, and problems. Features illustrated throughout with MATLAB and ETAP Proper use of positive/negative/zero sequence analysis of a given one-line diagram (OLD) associated with a grid, as well as finger-holding instructions to tackle a power system analysis (PSA) problem for a given OLD of a grid. On-line evaluation of power flow, short-circuit analysis, and related PSA for a given OLD Appropriately learn the finer nuances of designing the several components of a PSA, including transmission lines, transformers, generators/motors, and illustrate the corresponding equivalent circuit. Case studies from utilities and independent system operators.
Where To Download Short Circuit Analysis Using Etap

2019 International Conference on Computing, Power and Communication Technologies (GUCON)

This book, designed for engineers, technicians, designers and operators working with electrical networks, contains theoretical and practical information on the design and set-up of protections systems. Protection of Electrical Networks first discusses network structures and grounding systems together with problems that can occur in networks. It goes on to cover current and voltage transformers, protection functions, circuit breakers and fuses. Practical explanations of how protection systems function are given, and these, together with tables of settings, make this book suitable for any reader, irrespective of their initial level of knowledge.

Power System Analysis and Design

The 2014 International Conference on Energy and Power Engineering (EPE2014), will be held on April 26–27, 2014, in Hong Kong, China. The aim of this international convention is to bring together experts and scholars from around the world and offer them a chance to share the latest research results in the field of Energy and Power Engineering. We all know that over the past few decades, a great change has happened in the field of the environment technology, and the science technology is growing faster and faster. In order to keep up with the daily changing situation, we have sent invitations to experts, scholars and other people who have devoted himself in related fields, and it is a great honor to us that most of them have accepted our invitation and supported the EPE2014 with their latest studies. Up till now, we have received over three hundred papers from various countries; this shows that there has been a growing interest in the field of energy and power engineering. Among those papers received, we have eventually chosen about a hundred to be presented and included in this proceeding. These papers generally represented the current research status in this field and the future trend. We sincerely believe that these papers could be valuable to the future work of yours. Finally, on behalf of the committee, I would like to deeply express our gratitude to those who have supported the EPE2014, especially the international experts who helped reviewing papers, the DEStech Publications help publish the conference proceedings, and last but not least, the authors of these inspiring papers. Without the help from these people, EPE2014 would not be as half successful as it is now. Here, welcome to EPE2014 and let’s hope that it will be a great success. Tim Chou

Optimal Coordination of Power Protective Devices with Illustrative Examples

This book mainly introduces an essential safety concept and procedure for electrical engineering in oil and gas field. It begins by providing broad guidelines for performing electrical safety and operability review (ELSOR), giving reader a general overview of the field. It subsequently verifies electrical distribution, overhead line and hazardous area classification safety analysis together with comparison of different international codes and standards with China national codes, to interpret different safety concepts from different countries for electrical engineering in oil and gas field. This unique and complete co-design safety analysis will greatly benefit international electrical engineers and operators of oil and gas fields. This book is with vivid flow chart, accurate table expressing the analysis logic method and exact illustrations of code and standard of different country and area. This book stresses the electrical design safety for surface facilities of oil and gas oil field and will benefit to engineer who works with oil and gas field surface facilities engineering.

Power System Dynamics with Computer-Based Modeling and Analysis

A thorough and exhaustive presentation of theoretical analysis and practical techniques for the small-signal analysis and control of large modern electric power systems as well as an assessment of their stability and damping performance.

Computer Aided Power System Operation and Analysis

The new edition of POWER SYSTEM ANALYSIS AND DESIGN provides students with an introduction to the basic concepts of power systems along with tools to aid them in applying these skills to real world situations. Physical concepts are highlighted while also giving necessary attention to mathematical techniques. Both theory and modeling are developed from simple beginnings so that they can be readily extended to new and complex situations. The authors incorporate new tools and material to aid students with design issues and reflect recent trends in the field. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Protection of Electrical Networks

Provides practical guidance on the coordination issue of power protective relays and fuses. Protecting electrical power systems requires devices that isolate the components that are under fault while keeping the rest of the system stable. Optimal Coordination of Power Protective Devices provides a thorough introduction to the optimal coordination of power systems protection using fuses and protective relays. Integrating fundamental theory and real-world practice, the text begins with an overview of power system protection and optimization, followed by a systematic description of the essential steps in designing directional overcurrent relays and other optimal coordination. Subsequent chapters present mathematical formulations for solving many standard test systems, and cover a variety of popular hybrid optimization schemes and their mechanisms. The author also discusses a selection of advanced topics and extended applications including adaptive optimal coordination, optimal coordination with multiple time-current curves, and optimally coordinating multiple types of protective devices.
Where To Download Short Circuit Analysis Using Etap

fuses and overcurrent, directional overcurrent, and distance relays. Explains the relation between fault current and operating time of protective relays. Discusses performance and design criteria such as sensitivity, speed, and simplicity. Includes an up-to-date literature review and a detailed overview of the fundamentals of power system protection. Features numerous illustrative examples, practical case studies, and programs coded in MATLAB and Python programming languages. Optimal Coordination of Power Protective Devices is the perfect textbook for instructors in electric power system protection courses, and a must-have reference for protection engineers in power electric companies, and for researchers and industry professionals specializing in power system protection.

Power System Analysis

The object of this book is to teach the beginner the basics of three popular power system analysis programs. These programs are designed to simulate and analyze electrical power generation and distribution systems in normal operation and in short-circuit. The programs also have many add-on options like protection selection, arc flash analysis, transmission line sag & tension, raceway calculations, transient motor starting, etc. The programs have Demo (demonstration or trial) versions to allow people to tryout and learn about them. This book provides the engineer and technologist with information needed to use the Demo versions of SKM, ETAP, and EDSA for load flow and short-circuit analysis. The beginner learns how to use them on a small, but realistic, three-phase power system. The information gained is similar to that which students pay for in company-taught "Introduction to" courses. However, with this book, the student avoids paying tuition, learns at times of his own convenience, and can compare the different programs. In this book, load flow (power-flow) and short-circuit analyses are done on a small steady-state three-phase power system with manual methods. Then, each program is used to carry out the same analyses. Since in practice, three-phase systems are the most often analyzed, only three-phase systems will be considered in this book. The DC and single-phase capabilities of the programs will not be considered. The person using this book should already have an analytical electrical background. Academically, he should be educated to at least the level of a university two-year electrical engineering technology program.

Power System Dynamics with Computer-Based Modeling and Analysis

Short-circuit Currents gives an overview of the components within power systems with respect to the parameters needed for short-circuit current calculation.

Intelligent Electrical Systems:

This classic text offers the key to understanding short circuits, open conductors and other problems relating to electric power systems that are subject to unbalanced conditions. Using the method of symmetrical components, acknowledged expert Paul M. Anderson provides comprehensive guidance for both finding solutions for faulted power systems and maintaining protective system applications. You'll learn to solve advanced problems, while gaining a thorough background in elementary configurations. Features you'll put to immediate use: Numerous examples and problems Clear, concise notation Analytical simplifications Matrix methods applicable to digital computer technology Extensive appendices Diskette files can now be found by entering in ISBN 978-0780311459 on booksupport.wiley.com.

Comprehensive Energy Systems

Network Protection & Automation Guide

This valuable new volume is a must-have for any engineer. Covering almost all electrical equipment, such as generators, motors, transformers, cables, batteries, meters, relays, fuses, lamps, lightning arresters, circuit breakers, and so much more, it covers not only the basic theory, but also mathematical equations, selection guidelines, installation, commissioning, operation and maintenance, and many other practical applications. Equally as importantly, also covered here are all the applicable international standards, such as IEC and IEEE. This book is written in a simple language for easy understanding by field engineers. The rating plate of all the equipment is described in detail. The relevant details of the equipment have been taken from the reputed manufacturers brochures and their operation manuals. This book serves as a guide for researchers to know the gaps in existing technologies and gives direction for future research. A cademical, he should be educated to at least the level of a university two-year electrical engineering technology program.

Practical Power System Protection

Reflecting the changes to the all-important short circuit calculations in three-phase power systems according to IEC 60909-0 standard, this new edition of the practical guide retains its proven and unique concept of explanations, calculations and real-life examples of short circuits in electrical networks. It has also been completely revised and expanded by 20% to include the standards-compliant prevention of short circuits in electrical networks for photovoltaics and wind energy. By understanding the theory any software allows users to perform all the necessary calculations with ease so they can work on the design and application of low- and high-voltage power systems. This book is a practitioner's guide intended for students, electrical engineers, engineers in power
Where To Download Short Circuit Analysis Using Etap

technology, the electrotechnical industry, engineering consultants, energy suppliers, chemical engineers and physicists in industry.

Transient Stability of Power Systems

This paper investigates the effect of harmonics in the performance of over current relay in a power system. The simulation is carried in ETAP software which has an IEEE 9 bus system containing nonlinear loads. The load flow analysis, short circuit analysis, sequence of operation of relays and harmonic analysis and filter design was carried out in ETAP. ETAP because of its graphical interface and speed of operation and generation of reports is preferred for simulation study. The paper includes load flow analysis at every branch, which provides voltage, active power flow, and reactive power flow and power angle. The paper also includes the short circuit analysis and the protective device sequence of operation in the system. The current waveform and the harmonic spectrum are also analyzed for nonlinear loads without harmonic and with harmonics and harmonic filter. The calculation was done using formula and cross verified with the calculation received from ETAP.

Power System Dynamics and Stability

The conference aims to provide a premier platform for Engineers, researchers, scientists and academicians to present their work in the emerging areas such as Renewable Energy, Energy storage, Power Electronics & drives, Smart devices and communication systems, Artificial Intelligence, Robotics, Networks an IoT, Control and automation etc.

IEEE Recommended Practice for Electric Power Distribution for Industrial Plants

Offshore Electrical Engineering Manual, Second Edition, is for electrical engineers working on offshore projects who require detailed knowledge of an array of equipment and power distribution systems. The book begins with coverage of different types of insulation, hot-spot temperatures, temperature rise, ambient air temperatures, basis of machine ratings, method of measurement of temperature rise by resistance, measurement of ambient air temperature. This is followed by coverage of AC generators, automatic voltage regulators, AC switchgear transformers, and programmable electronic systems. The emphasis throughout is on practical, ready-to-apply techniques that yield immediate and cost-effective benefits. The majority of the systems covered in the book operate at a nominal voltage of 24 y dc and, although it is not necessary for each of the systems to have separate battery and battery charger systems, the grouping criteria require more detailed discussion. The book also provides information on equipment such as dual chargers and batteries for certain vital systems, switchgear tripping/closing, and engine start batteries which are dedicated to the equipment they supply. In the case of engines which drive fire pumps, duplicate charges and batteries are also required. Packed with charts, tables, and diagrams, this work is intended to be of interest to both technical readers and to general readers. It covers electrical engineering in offshore situations, with much of the information gained in the North Sea. Some topics covered are offshore power requirements, generator selection, process drivers and starting requirements, control and monitoring systems, and cabling and equipment installation Discusses how to perform inspections of electrical and instrument systems on equipment using appropriate regulations and specifications Explains how to ensure electrical systems/components are maintained and production is uninterrupted Demonstrates how to repair, modify, and install electrical instruments ensuring compliance with current regulations and specifications Covers specification, management, and technical evaluation of offshore electrical system design Features evaluation and optimization of electrical system options including DC/AC selection and offshore cabling designs

Copyright code: 0f44bc98f0c84e1f0b2193adfad9d46